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Shear dispersion looked at from a new angle 

By RONALD SMITH 
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 
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It is shown that for a sudden uniform discharge at 2 = 0, t = 0 in a bounded shear 
flow, the asymptotic concentration distribution at  moderately large times can be well 
approximated by the tilted Gaussian 

- (x-Zt -go(y, 2) + 2 c ~ D ) ~  

2 ( n Z )  
c =  Q exp(- 

(2n( u2) )t 

with (19) = 2Dt + 2aD(x -Zt) - 3g- 4azD2, 

- (U-u)9: 
2D2 * 

go=O, D = U g , ,  a =  

Here u(y, z )  is the velocity profile, go(y, z )  the centroid displacement function, and the 
overbars denote cross-sectional averaging. The tilt parameter a makes the concen- 
tration distribution suitably skew. The effectiveness of this simple formula is 
demonstrated for two-layer flows and for plane Poiseuille flow. 

1. Introduction 
The duality between concentration distributions as observed at fixed times or at  

fixed positions has been the subject of several recent investigations (Tsai & Holley 
1978; Chatwin 1980; Smith 1984). The alternative viewpoints share the difficulty that 
the spatial or temporal concentration distributions are markedly skew. This has the 
consequence that approximate representations are either inaccurate (e.g. diffusion 
models) or complicated (e.g. Hermite series with as many as six terms). 

Although the asymptotic growth rates of the spatial and temporal variances are 
proportional to each other (Tsai & Holley 1978, figures 6, 8, 9, lo), the same is not 
true of the third moments (Tsai & Holley 1978, figures 11, 12). Thus, the question 
arises whether there is some angle intermediate between the temporal and spatial 
extremes (i.e. an optimal combination of 2 and t )  for which the corresponding third 
moment remains bounded. If so, then the comparatively weak and rapidly decaying 
skewness gives renewed credance to the classical (Taylor 1953; Gill t Sankarasub- 
ramanian 1970) use of a Gaussian representation for the longitudinal concentration 
distribution. 

The successful outcome to this quest is stated in 97. The derivation and testing 
of the approximation is the subject of this paper. 
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at X 

X 

FIQURE 1. Definition sketch showing the geometric relationship between the tilted coordinate 
system X, T and the conventional coordinates x, t .  

2. Tilted and centroid-following coordinate system 

the form 
For high-P8clet-number plane parallel flow, the advection-diffusion equation takes 

a , c + u a , c - v q K v C )  = Q, ( 2 . 1 ~ )  

with K n . V c  = 0 on aA. (2.1 b )  

Here u(y ,  z )  is the longitudinal velocity, K ( Y ,  z )  the transverse diffusivity, V the 
transverse gradient operator (0, a,, aZ),  ~ ( x ,  y, z, t )  the source strength, aA the imper- 
meable boundary, and n its outward normal. The high-P&let-number assumption 
means that the longitudinal shear dispersion vastly dominates the direct effects of 
longitudinal diffusion. Thus, a K a : c  term has been neglected (Taylor 1953; Aris 
1956). 

At large times after discharge the contaminant moves along with the bulk velocity 
u. Thus, it is convenient to use axes moving with the flow. Also, for reasons explained 
in 8 1,  we allow a tilt in the orientation of the evolutionary coordinate (see figure 1 )  : 

T = t+a(x-Zt) ,  ( 2 . 2 ~ )  

- 

x = x-Tit. (2.2b) 

The limiting cases a = 0, aU = 1 give predominance respectively to the temporal and 
spatial evolution of the concentration. The transformation of the field equation 
( 2 . 1 ~ )  is 

( l+aU‘)a,C+u’a,C-V’(KVC) = Q, ( 2 . 3 ~ )  

where uf = u-5. (2.3b) 

The tilt parameter a will be chosen to make a Gaussian approximation for c as 
accurate as possible. 
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Longitudinal position 

FIQURE 2. Sketch of the centroid-following g-coordinate surfaces. 

Aris (1956) established that at different levels (y, z )  across the flow the centroid is 

v . ( K v g )  = -u’, (2.4a) 

K n ’ v g  = 0 on aA, (2.4b) 

(1 +au’)g = 0. ( 2 . 4 ~ )  
The overbar denotes a conventional cross-sectional average value. The traditional 
definition of the centroid displacement function go(y, z )  corresponds to a = 0. The 
normalization ( 2 . 4 ~ )  merely gives a shift in value 

(2.5) 

displaced by an amount g(y, z )  where 

9(Y, 4 = So(% 4 -4%. 
To improve the accuracy of a one-term Gaussian approximation, we shall build the 

centroid displacement into the coordinate system : 

E = x-g (y , z )  = x--;lit-g(y,z), 

(1 +au’) aT c+ 2Kvg-v a,c- K ( ~ g ) ~ a ;  C-v- (KvC) = q. 

(2.6) 

(2.7) 
At  first sight (2.7) would appear to be more awkward to  study than the original 
equation ( 2 . 1 ~ ) .  However, with the correct choice for a, we find that a t  large T the 
solution of (2.7) has a particularly neat form. 

(see figure 2). In  the tilted, centroid-following coordinate system the field equation is 

3. Moments and weighted means 
In  the tilted coordinate system we define the moments (Aris 1956; Barton 1983): 

where the displaced origin go will be chosen to make c ( l )  asymptotically zero. Thejth 
moment of (2.7) gives an equation for c(J )  : 

(1 +olU’) a , C c n - v . ( K V C ( l ) )  = q‘”+2jKVgoVCcr-1)+j(j-1)K(Vg)2C(’-2). (3.2) 

By virtue of the integration with respect to 6, the a,c and aic terms in (2.6) have 
been replaced by lower-order c(1-l) and 

The (1 +ad) weighting of the T-derivative in (3.2) leads us to define a weighted 
average 

(3.3) 

forcing terms. 

(f > = (1 + au’)f. 
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If we make the decomposition 
,(I) = (,W) +&C,cj), (3.4) 

then the cross-sectional average of the moment equation (3.2) yields the useful sequels 

J-a) 

T 
+j(j- 1) .(Vg)2&c(j-2) dT'. (3.6) 

In  $$5,6 it  is confirmed that &do) and ad1) are asymptotically zero. Thus, at j = 2 
in (3.6) the only persistent forcing stems from (do) )  : 

a)- 

( d 2 ) )  - 2 m  T q ( O )  dT'+ const. 
-a) 

(3.7) 

The constant depends on the transient behaviour of q('), &do), &dl) and is the subject 
of $6. The T-coefficient in (3.7) immediately gives us a formula for the shear dispersion 
coefficient : 

D = K(Vg)' = u'g = u'go 
(Taylor 1953). 

2, y, z, t .  Thus, we note the relationships 
In practice the source strength is given as a function of the original coordinates 

Tkq(j)dT = Ja) Jm ( t + c z ( ~ - W ) ) ~  (z-Zt-i$o-gyqdzdt. (3.9) 
-a) -a) 

In  the important limiting case of a sudden discharge a t  2 = 0, t = 0 with cross-stream 
discharge profile q(y, z )  we record that 

For example, a t  large T, (3.5) yields the asymptote 

( d o ) )  - q. 

(3.10~) 

(3.10b) 

(3.10~) 

(3.10d) 

(3.11) 

4. Choosing the tilt 

(c(@) will grow linearly with T unless 
A t  j = 3 we infer from (3.6) that, since (c(l)) and &c(l) are asymptotically zero, 

u'&d2) - 0 for large T. (4.1) 
This is the condition that leads to our selection of the tilt a, i.e. the minimization 
of the eventual skewness. 



Shear dispersion looked at from a new angle 45 1 

From (3.2), (3.5) and (3.7) we deduce that for large T the asymptotic value of 

V*(KVSC~)) = 2{(1+au')D-~(Vg)~} J-, q(O)dT, 

ad2) satisfies the equations 

( 4 . 2 ~ )  

Kn*V&Cg' = o on aA, (4.2b) 

( 4 . 2 ~ )  

By analogy with (2.4a-c) for g(y, z )  we introduce the excess variance function R(y, z )  : 

V*(KVR) = ( l + a u ' ) D - ~ ( V g ) ~ ,  (4.3a) 

Kn*VR = 0 on aA, (4.3b) 

(4.3c) 

(1 + au') Scg) = 0 

(1 +au') R = 0, 

R = R o - a D g o + a 2 D 2 - + x ~ .  

S C ~ )  = 2R I-: q'O'dT. 

Thus, we can represent Scg) as 

Substituting for 6cg) into (4.1), we require that 
- 
u'R = 0. 

(4 .34  

(4.4) 

(4.5) 

From (2.4) and (4.3) satisfied by g and R we can derive the equivalent constraints 
-~ 

0 = u'R = Kg(Vg)' = $7. (4.6) 

To build the implied value of a into our calculations we modify the definition 

v*(Kvg) = -U', ( 4 . 7 ~ )  

K?I*vg = 0 on aA, (4.7b) 

u'g2 = 0. (4.7c) 

(2.4a-c) of the centroid displacement function g(y, z ) :  

- 

The former normalization ( 2 . 4 ~ )  then becomes a definition for a: 

The choice (4.8) ensures that (c@)) remains bounded. Thus, the coefficient of 
skewness 

decays at the rate Td rather than the usual very slow rate T?f (Chatwin 1970, 1980; 
Nadim, Pagitsas t Brenner 1986). 

5. Choosing the displaced origin 
A t  j = 1 (3.6) takes the form 

J -m J -m 

Before we can eliminate (&)) at large T, we have to evaluate the u'Sc(O) integral. 



452 R. Smith 

From (3.2) and (3.5) we can deduce that the perturbation zero moment satisfies 
the field equation 

(1  + au') a,(~c(o)) - V *  (KvWO)) = ' ( 0 )  -q"(1+ au'). (5.2) 

The forcing term has zero cross-sectional average. Thus, provided that the source is 
of limited extent and duration, it follows that Sc(O) tends to zero on a timescale for 
diffusion across the flow (as was assumed earlier in $3). 

Following the pattern of calculations established by Smith (1984, Appendix A), 
the u' term in the integrand u'Sdo) leads us to consider (4.7u-c) satisfied by the 
centroid displacement function g(y, 2). The two field equations ( 4 . 7 ~ )  and (5.2) 
satisfied by g and Sc(O) can be combined: 

a,{g(i + ~ U ' ) 6 C ( o ~ } - v ' ( g K ~ ~ C c o ~ ) + v ' ( ~ C c o ' K v g )  = g(q'o'-q"(l +CCU'))-U'&c(o). (5.3) 

Integrating this composite equation across the flow and with respect to T, we arrive 
at the result 

J -m J -m 

The transience of &do) ensures that the final term vanishes for large T. 
Returning to (5.1) we have the asymptote 

For the special case of a sudden discharge at x = 0, t = 0 we use (3.10u, c )  to obtain 

(c(1)) - - E o q + @ .  (5.6) 

Hence we choose the displaced origin 

The field equation ( 2 . 4 ~ ~ )  or (4.7~) satisfied by g(x,y) suggests that the g-profile 
closely follows the u' profile. Hence, a discharge where the flow is fast can be expected 
to be displaced forwards. Less obviously, there is dependence upon a :  

6 =:- 'O' aD, 
O '  

(5.8a) 

(5.8b) 

The difference between the values of the centroid position X, in the cases 
a = 0, aU = 1 has been remarked upon by Tsai & Holley (1978) and by Smith (1984, 
equations (1 1 . l ) ,  (1  1.4)). A t  a fixed position, contaminant that arrives later has had 
more time to be dispersed. This extra spreading gives a shift of the centroid towards 
later times, i.e. to negative X. 
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6. Asymptotic second moment 
When written in full (3.7) becomes 

J --co J -a, 

Thus, we have to contend with integrals involving 8d1) and &do). 
The field equation for the perturbation first moment 8d') can be written 

(1 +au')aT(8cC('))-V'(KV8C(')) 

= q(') - ( 1  + au') q"'+ 2(U'8CC0) - (1 + OCU') U8d0)) + 2v'  (8Cco)Kvg). (6.2) 

As was the case with (5.2) for &do), there is no net discharge, and the right-hand-side 
forcing terms are all transient. Hence (as was assumed in § 3 ) ,  ad1) tends to zero on 
the timescale for diffusion across the flow. Of course, all this means is that at large 
times the use of centroid-following coordinates has achieved the stated objective of 
accurately followingt& centroid and of eliminating ad1) .  

To evaluate the use(') integral we commence with a composite equation satisfied 
by g and 8d') : 

aT{g( 1 + O X ' )  dC(')}- v' (gKV8C")) + v .  (8d1)KVg) 

= - U'dC(1) + g ( p  -p( 1 +au')) - 2g( 1 + ad) U'SC(0) 

+ 2V* (KgGdO'Vg) + 2 6 c ( O ) ( ~ ' g - ~ ( V g ) ~ ) .  (6.3) 

Integrating across the flow and with respect to T we obtain 

Hence, in (6.1) the u'Sc(') integral can be replaced by integrals involving &do). 

R(y,  z )  and 8d0) : 
To evaluate the K(Vg)2 &do) integral we construct a composite equation satisfied by 

aT{R(i +au') ~~(O)}-V.(RKVG~(O))+V.(G~(O)KVR) 
- 

= R(q'o)-qq'o'(l +dU'))+ ( 1  +Cf.U') D8C(o)-K(vg)28C(o). (6.5) 

Integrating across the flow and with respect to T ,  we derive the asymptote 

00 m -  
K(Vg)2 &do) dT' - Rq(O) dT'. (6.6) 

I m  

For the u'g8d0) integral, we first introduce the auxiliary function g("'(y, z )  : 

v.  (KVg(2)) = (1 + 02.4') D - Ug, (6.7a) 

with 

Kn'vg(2) = 0 on aA. 

(1 + au') g ( 2 )  = 0 ,  

g ( 2 )  = R++g2-$(1 +au')g2. 

(6.7b) 

( 6 . 7 ~ )  

(6.7d) 
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The composite equation satisfied by g@) and &do) is 

a,{g(z)( 1 + au') &do)} - V* (g(2)KVSc(o)) + V. (Sc(O)KVg) 
= g ( z ) ( q ( o ) - p ( l  +au'))+ (1 +au') DSd0)-ugSdo). (6.8) 

In the now familiar manner, we integrate across the flow and with respect to T,  
deriving the asymptote 

The expressions (5.4), (6.6) and (6.9) for the various &do) integrals permit us to 
evaluate the asymptotic expression for (&) )  : 

a- 
gq'"dT'+8 g ( ' ) q ( O )  dT'-6 

+4 J-, J-: - 
For the special case of a sudden discharge at x = 0, t = 0 with to given by (5.7), this 
simplifies to 

(6.11) 

If we eliminate g@) in favour of R, by means of (6.7d), then the asymptotic second 
moment can be expressed 

( d 2 ) )  N 2TDq---3fi+8=-6&. (m2 
P 

- 
(C'2') 924 i w 2  RP 
( d o ) )  Q P 
- N 2DT-4(1+au')g2+=- (,) - + 2 T .  (6.12) 

To include the ( y ,  %)-dependence of d2) ,  we need to add together the asymptotic 
results (6.12) and (4.4) for ( d 2 ) )  and for &@: 

To explicitly reveal the a-dependence we use (2.5) and (4 .34  to replace g and R in 
terms of go and R,: 

-2aD :+go -6aZ$+8a2D2. (6.14) 

For the special cases a = 0, acU = 1 this equation agrees with Smith (1984, equations 
(11.8), (11.9)). Remarkably, Tsai & Holley (1980) were able to identify the 6a- 
coefficient from their numerical work. 

ty) 

For uniform discharges and with the optimal choice for a, (6.13) becomes 

g2 N 2DT-3z-a2D2+2R(y ,z) ,  ( 6 . 1 5 ~ )  

(6.15b) (u2) N 2DT-3z-a2D2 = 2DT-3z-4a2D2. 
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7. Gaussian approximations 
Nadim c$ al. (1986) warn of the inconsistencies, such as negative concentrations, 

that can arise beyond a Gaussian approximation. Yet, as expounded by Chatwin 
(1970, 1980), the usefulness of a Gaussian approximation to the longitudinal concen- 
tration distribution is severely limited by the slow decay (as ta) of the skewness. 
What has been achieved here by the use of tilted, centroid-following coordinates 

T = t + a ( x - G t ) ,  (7.la) 

6 = x - u t - g ( y , z )  ( 7 . l b )  

( 7 . 1 ~ )  

is an accelerated decay (as T-t) of the skewness. The centroid-displacement function 
g(y ,  z )  is defined by the cross-stream equations 

v*(Kvg) = u - U ,  (7.2a) 

with 

(7.2b) 

( 7 . 2 ~ )  

(7.2d) 

For a sudden discharge at x = 0, t = 0 with cross-stream profile q(y,  z) the asymp- 

c(0) = - q 9  (7.3a) 

totic zero moment, centroid and variance are 

(7.3b) 

(7.3c) 

Here the excess variance function R(y, z) satisfies the cross-stream equations 

v * (KVR) = ( 1 4- oI(U - u) ) D - K (  Vg)', (7.4a) 

Kn'VR = 0 on aA, (7.4b) 

R = 0. (7.4c) 

I 

- 

A Gaussian approximation that reproduces the asymptotes (7.3a-c) is 

1 6-60 
- 

C =  a(2x)i exp [ -2 (4 (7.5) 

Since our calculations have only extended as far as the third moment, it follows that 
the dominant error is associated with the fourth moment. From the work of Chatwin 
(1970,1980) we can infer that for large T the relative error decays at the modest rate 
T-1. 

For uniform discharges it is tempting to avoid the calculation of the excess variance 
function R(y, z). First, we note that the contribution to the variance is zero. Next, 
if we write 

(7-6) c7' = (a') + 2R(y, z) ,  
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then (7.5) can be expanded in powers of R / ( a 2 )  : 

where (7.7b) 

He2([) = 6 - 1,  He4(5) = C4 - 652 + 6. (7.7c, d )  

The selection (7.1 c) of a ensures that the two averageszand ( R )  are both zero. Hence 
we can expect the function R(y ,  z )  to  be relatively small (as compared say to g 2 ) .  This 
leads to the Gaussian approximation 

- q exp(- ( x - E t - g ( y ,  z )+aD)2 

(2n( r2))i %a2) 
C =  

with 

In terms of go this can be rewritten as 

(a2) = 2Dt + 2aD(x-Et) - aT- a2D2. 

- 
( x - E t - g o ( y ,  ~ ) + 2 a D ) ~  

2 ( a 2 )  
C =  (en( q a")i exp(- 

with 
( u2) = 2Dt + 2aD(x -at) - 3 2 -  4a2D2. 

( 7 . 8 ~ )  

(7.8b) 

( 7 . 9 4  

(7.9b) 
Sometimes it is only the cross-sectionally averaged concentration E that is required. 

Z2 = 2Dt+2aD(x-Et)-22-4a2D2, (7.10) 
If we define 

then ( 7 . 8 ~ )  can be expanded: 

g: g: + 24z4 l 2  @)' He4(lJ + . . . } , (7.1 1 a )  

where 
x -Et  + 2aD 5=  c ? ( 7 . l l b )  

He,(C) = 5, He,(Y) = 6 - 35. (7.11c, d )  

By definition go(y ,  z )  has zero cross-sectional average. Also, the particular choice 
(7.10) for Z2 is designed to ensure that the He&) coefficient has a zero cross-sectional 
average. Thus, for Z(x, t )  we pose the Gaussian approximation 

(7.12) 

At large times the area, centroid, variance and growth rate of the third moment are 
all asymptotically correct. It is this final ingredient, associated with the tilt paFameter 
a, that makes the tilted Gaussian an improvement upon conventional Gaussian 
representations. 
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8. Two-layer flows 
The exact solution given by Thacker (1976) for two-layer flows provides a 

convenient means of testing the accuracy of the asymptotic solution (7.5). We denote 
the layer velocities by u+, u- and the e-folding rate for mixing between the two layers 
by A. The advection4iffusion equation ( 2 . 1 ~ )  is replaced by the pair of equations 

a, c+ + u+ a, c+ = Aa-(c- - c+) + q+, 

a, c- + u- a, c- = Aa+(c+ - c-) + q-. 

(8.1 a )  
(8.1 b )  

Here c+, c- are the concentrations in each of the well-mixed layers, q+, q- are the 
source strengths within each layer, and a+, a- are the fractional areas of the layers : 

- 
u-u- U+-U a+ = - , a_=-. 
u+ - u- u+ - u- 

(8.2a, b )  

If we choose to eliminate c-, then we find that c+ satisfies a telegraph equation 

For a sudden discharge at x = 0, t = 0 the upper-layer concentration c+ has a 
modified-Bessel-function representation confined to the range u- t < x < u+ t : 

), (8.4a) 
(a-( x - u- t ) + a+( u+ t - x) ) 

xexp(-A u+ - u- 

with 
(Z-u-t)  (u+ t -x )  

(u+-u-) 2 '  
r2 = 4A2a+a- (8.4b) 

together with a decaying delta-function singularity moving at the layer velocity : 

c+ = q+d(x-u+t) exp(-a-At). ( 8 . 4 ~ )  

The inclusion of longitudinal diffusion within each layer removes these spikes, but 
the corresponding analytic solution is much more complicated (Chickwendu & 
Ojiakor 1985). 

To apply the analysis of the present paper, we first need to evaluate the centroid 
displacement function g : 

u+ - u- (u+ - u-) 
2A . 9+ = 2h , g - = -  (8.5a, b )  

From g+, g- we can evaluate the shear dispersion coefficient and the tilt parameter : 

(8.6b) 

Conveniently, the two properties R = 0, (R) = 0 of the excess variance function 
ensure that 

- (u++u-)-2'il - (a+-a-) 1 
2a+a- (u+-u-) 2(u+-U) (U-u-)' 

a = -  

R+ = R- = 0. (8.7) 
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FIGURE 3. Comparison between the exact (-) and tilted Gaussian (----) concentration 
dietributions at times At = 6,10,15 for the upper-layer concentration with (a) a lower-layer 
discharge in a two-layer flow, and ( b )  an upper-layer discharge in a two-layer flow. The area under 
the delta-function spikes is indicated by the area of the flags. 
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Thus (7.3b, c) for the centroid displacement .& and the variance u2 take the form 

a+ q+ -a- q- (u+ - u-) 
a+q++a-q- 2A ’ 60  = 

3 (u+-u-) 2 

U’ = 2DT-- - c. 4 A2 

(8.8a) 

(8.8b) 

Figure 3(a, b) compares the tilted-Gaussian approximation for c+ with the exact 
solutions in the dead-zone situation 

u-=O, u+ =$  (a- =j,  a+=$).  (8.9) 
There is no counterpart to  the concentration spikes. However, for moderately large 
values of At the tilted Gaussian is reasonably accurate, and does achieve its objective 
of yielding suitably skew concentration distributions. 

For a uniform discharge q+ = q- = at x = 0, t = 0 the exact solution for I has the 
continuous part (u- t < x < u+ t )  

with 
(2-u- t )  (u+ t -2 )  

(u+-u-) 2 ’  re = 4A2a+a- 

plus the pair of decaying-delta-function spikes 
- 
c = a- i$(x - u- t )  exp ( - a+ At), 

c = a+@(x-u+t) exp(-a-At). - 

(8.10b) 

(8.10 c) 

(8.10d) 

The Gaussian approximation (7.5) or (7.8) for the component concentrations c+ 
and c- leads to a composite formula 

- 

h 
- q 
= (2n(a2))f 

1 ‘“+-“-’>1} ( 8 . 1 1 ~ )  
h +a- exp[ -- ( 

2<@) x-m+a- 
with 

Alternatively, the direct Gaussian approximation (7.12) for C is 

( X - l l t )  

u+ - u- 2a+a-At-(a,-a-)A--~-(~+-a-)~ 

Figure 4 compares these double and single tilted-Gaussian distributions with the 
exact solution in the dead-zone situation (8.9). The approximate distributions are 
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FIGURE 4. Comparison between the exact (-), double tilted Gaussian (----), and single tilted 
Gaussian (. . . a )  at times At = 5,10,15 for the cross-sectionally averaged concentration E with a 
uniform discharge in a two-layer flow. The area under the delta-function spikes is indicated by the 
area of the flags. 

virtually indistinguishable from each other. For modest values of At the skewness is 
well reproduced. It is the negative kurtosis (flat centre and the absence of tails) that 
gives the dominant error. 

9. Plane Poiseuille flow 
To discriminate between the Gaussian approximations (7.5) and (7.8) we need an 

example for which the excess variance function R(y ,  z )  is non-zero, and for which exact 
results are available at suitably large times. This second constraint leads us to 
consider plane Poiseuille flow, which has been investigated numerically by Jayaraj 
& Subramanian ( 1978). 

The velocity profile is parabolic : 

u = $[ 1 -($I] ( -d  < y < d )  

and the centroid displacement function is a quartic : 

The integrals us, z, S can all be evaluated explicitly: 

7 
01 = -- 2 U2d2 - 163 E2d4 D = - -  g2=-- 

105 K ’ 73920 K~ ’ 22z’ (9.3) 
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FIQURE 5. The relative shapes across the flow of the non-dimensional functions 
(u/?i) - 1 log K/d%, 1000R~~/d~~2 for plane Poiseuille flow. 

Solving (7.4a-c) we find that the excess variance function is a polynomial of degree 8 : 

Figure 5 compares the shapes of the velocity profile u-U, the centroid displacement 
function g(y), and the variance function R(y). The dimensional factors Z, K ,  d have 
been ignored, g has been scaled up by a factor 10, and R has been scaled up by a 
factor of 1OOO. General features that are exhibited by this special case are the 
similarity between the (u-U)- and g-profiles, and the comparative smallness of R 
compared to g2. We note that R(y) is negative both at the centre and near the sides. 
Thus, the shear dispersion process is less efficient, with reduced longitudinal 
spreading, where the velocity shear is small and also close to a boundary. Hence, the 
approximation (7.8), which neglects the 2R(y) contribution to a2, will slightly 
underestimate the concentrations in the fastest and slowest moving parts of the 
contaminant cloud, with slight overestimates in the middle of the cloud. 

Figure 6 compares the concentration contours given by the tilted Gaussian (7.5) 
and by the simplified formula (7.8) (neglecting R ( y ) )  at the time t = 0 . 4 d 2 / ~ .  
Following Jayaraj & Subramanian (1978, figure 4) ,  the initial discharge is assumed 
to have been uniform across the flow, with a longitudinal spread of 0.04.ud2/~. Also, 
there is a direct longitudinal diffusion contribution of 0 . 0 0 4 2 d 2 / ~  to D. These are 
accounted for by appropriate increments to u2 and to (a2). The dominant feature 
of the concentration contours is their centroid-following character. Although there 
are not major quantitative differences, there is the qualitative difference of the 
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FIGURE 6. Concentration contours for plane Poiseuille flow at time O . ~ @ / K  after discharge aa 
predicted by the tilted Gaussian including R(y) (----), and the tilted Gaussian neglecting R(y) 
(* * *). 

4 

0 0.2 0.4 0.6 

Longitudinal position 

FIGURE 7.  Comparison between Jayaraj & Subramanian's (1978) exact result for i? (-), the 
average of the tilted Gaussian including R(y) (----), the average of the tilted Gaussian neglecting 
R ( y )  (* * *), and the direct formula for a ( * . . .) at a time 0.4de/~ after discharge in plane Poiseuille 
flow. 

high-concentration patches at  the centre and side of the flow for the full Gaussian 

Jayaraj & Subramanian (1978, figure 4) present numerical results for the cross- 
sectionally averaged concentration C. Figure 7 shows the exact results together with 
the cross-sectional averages of (7.5) and (7.8) and the direct tilted Gaussian formula 
(7.12) for C. Again, the various tilted Gaussian approximations are virtually indis- 
tinguishable, showing the rapid convergence of the series (7.7) and (7.11). 

An important restriction upon the present analysis is that it is only applicable at 

(7.5). 
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large times after discharge, when the contaminant has become well mixed across the 
flow. (Otherwise the predicted variance Z2 can be negative!) Subject to this 
restriction, the results given by the tilted Gaussian formulae are of comparable 
accuracy with those given by other more complicated models (see Smith 1981, 
figure 7). To do better, and to reproduce the flatness of the profile, would require an 
extension of the calculations to evaluate the fourth moment and to go beyond the 
Gaussian approximation. 

I wish to thank the Royal Society for financial support. 

Appendix. Field-flow fractionation 
In  the context of the work of Jayaraj & Subramanian (1978), the results shown 

in figure 7 above are anomalous in the very weak skewness. To give a more convincing 
demonstration of the usefulness of the tilted-Gaussian approximation, this Appendix 
investigates the effect of a transverse drift upon contaminant dispersion. 

In  the original (2, y, t)-coordinates the advectiondffusion equation takes the form 

with wc-KCa,c = 0 on y = y-, y+. (A 1b) 

The transverse drift w is associated with a transverse force field (centrifugal, electrical, 
gravitational, magnetic or thermal) and can be a function of chemical species. When 
there is a longitudinal flow this drift away from regions of high (or low) velocity can 
lead to longitudinal separation of the component species in a mixture. The combined 
roles of the force field and of the longitudinal flow have led to the name ‘field-flow 
fractionation ’. 

The equilibrium profile of concentration across the flow is given by 

where the reference level yo is chosen so that the cross-sectional average value 7 = 1 
is correctly reproduced. If we write 

c = f(2, Y, t )  Y W ,  (A 3) 

then the equation satisfied byf can be written 

Y a,f+ 3/u a,f- ay(YK a,f 1 = (A 4a) 

with Ka,f = 0 on y = y-, y+. (A 4b) 

Thus, instead of the transverse drift term, there is a profusion of y-weighting factors 
in the advection-diffusion equation. 

It is now merely a matter of including the appropriate y-factors in the results of 
the above paper. In  particular, a generalization of the simplest of the tilted-Gaussian 
formulae (7.12) for a sudden discharge at 2 = 0, t = 0 is 
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where 

R. Smith 

Y (u - uoo) 
2D2 ’ a =  

The centroid displacement function go(y) is defined by the cross-stream equations 

By construction the approximation (A 5a) correctly reproduces the asymptotic area, 
centroid and growth rates of the second and third moments. There can be a small 
error (2@/ij) in the variance if the discharge shape q(y)  does not correspond to the 
equilibrium profile y(y). 

For plane Poiseuille flow with constant v and K the equilibrium profile of 
concentration across the flow is exponential : 

P y=-  
sinh P (?)’ 

(A 7b) 
vd where p=-. 

The weighted-average advection velocity uoo is given by the formula 

K 

3 coth P 3 

and the centroid displacement function has the explicit solution 

6 
coth P-- coth2 P+ P 

The many integrals involving go can most easily be evaluated by numerical 
quadrature, although Krishnamurthy & Subramanian (1977, equation (A 31)) do 
state the explicit formula for the shear dispersion coefficient: 

2 P  10 coshP 14sinhP 2 +- P + P  sinh P 
K 

+ 6  sinh PI .  (A 10) 
2P cosh P 4 cosh2 P - - 

sinh2P sinhP 
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FIGURE 8. Comparison between Jayaraj & Subramanian's (1978) exact results for E (-), and the 
tilted Gaussian formula for 2 ( .  . . . ), a t  a time 2 d 2 / ~  after discharge in plane Poiseuille flow with 
a transverse drift vd/K = 5. 

Jayaraj & Subramanian (1978, figure 13) give the ?-distribution for field flow 
fractionation with P = 5 at a time t = 2 d 2 / ~  after a uniform discharge. The terms 
needed for the evaluation of the tilted-Gaussian approximation (A 5a) arc 

I X K  DK % = 0.48, = 0.11, - = 0.00807, 
U u d 2  $d2 

- K2 
g ; z  = 0.0182. 

u d  

(A 11 a- f )  

As before, the effects of longitudinal diffusion and of the initial discharge size can 
be allowed for by an appropriate increment to 2 7 .  Figure 8 shows the efficiency 
of the tilted Gaussian. The substantially later time than that for figure 7 explains 
the improved accuracy. More importantly, the marked skewness is accurately 
reproduced. 
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